
A comparison of several fault-tolerance methods

for the detection and correction of floating-point

errors in matrix-matrix multiplication

Valentin Le Fèvre, Thomas Herault, Julien Langou and Yves Robert

ROMA team, Inria Grenoble Rhône-Alpes, France
LIP laboratory, ENS Lyon, France

Innovative Computing Laboratory, Knoxville, TN, USA
University of Colorado Denver, CO, USA

August 2020

Abstract

This paper compares several fault-tolerance methods for the detection
and correction of floating-point errors in matrix-matrix multiplication.
These methods include replication, triplication, Algorithm-Based Fault
Tolerance (ABFT) and residual checking (RC). Error correction for ABFT
can be achieved either by solving a small-size linear system of equations, or
by recomputing corrupted coefficients. We show that both approaches can
be used for RC. We provide a synthetic presentation of all methods before
discussing their pros and cons. We have implemented all these methods
with calls to optimized BLAS routines, and we provide performance data
for a wide range of failure rates and matrix sizes.

1 Introduction

Reliable computing has become a key challenge when deploying applications on
large-scale platforms. These platforms are confronted to many errors striking
during execution. These errors are due to the extremely large number of floating-
point operations executed by the parallel applications that are deployed on such
platforms. Indeed, the probability of facing a corrupted floating-point operation
is proportional to the number of such operations that are executed [8]. Even
if each processor exhibits a low individual error rate, the probability of several
errors striking during the execution of the parallel application becomes very
high with millions of cores running in parallel for a few days, or even hours.

There are very few ways to ensure that a whole application has executed
without error. The only general-purpose method is to replicate the execution

1



and to compare the results of both executions. If they do not coincide, an
error has been detected, and the application must be executed a third time.
To avoid a-posteriori re-execution, triplication can be enforced, which allows
for error correction in addition to error detection, using a simple majority vote.
However, triplication is even more costly than replication, which already requires
half the resources to execute redundant operations. Fortunately, many scientific
applications heavily rely on scientific kernels from numerical linear libraries,
and much of their floating-point operations are executed within these kernels.
For most linear algebra kernels, application-specific methods have been devised
for error detection and correction, with a much lower cost than replication.
The most prominent application-specific approaches are Algorithm-Based Fault
Tolerance (ABFT) and Residual Checking (RC), which we describe in full details
in Section 2. Both ABFT and RC are known to enable error detection, but
ABFT has received much more attention because it is also deployed for error
correction. In theory, ABFT can correct up to k errors with 2k+1 checksums [17,
16, 13]. However, the numerical instability of floating-point ABFT currently
limits its usage to correct one or two errors within a kernel.

In this paper, we revisit the Residual Checking (RC) approach, and show
that it can be an efficient alternative to ABFT for error detection and correction.
In particular, we focus on providing a transparent hardened version of some
operation: the API, as exposed to the user, does not change, but the result
is checked (and corrected if needed) before it is returned to the user. This
creates a problem for ABFT, as the efficiency of the technique lies in mixing
the user data and the redundant data used for failure detection and correction
(see Section 2.2). RC can be implemented without modifying the API of the
original computation kernel (see Section 2.3), which is a key advantage from
a software engineering perspective. Another drawback of ABFT compared to
RC is the lack of flexibility. By construction, ABFT uses a fixed number of
checksums chosen a priori, say 2k + 1, and will fail if more errors than k errors
strike during the kernel. On the contrary, RC adapts the number of verifications
on the fly, as a function of the number of errors found.

We adopt a somewhat narrow focus and only deal with protecting matrix-
matrix multiplication from floating-point errors. Matrix-matrix multiplication
is the archetypal linear kernel and is at the heart of several linear solvers, hence
it is one of the most important kernels to study. Assessing the efficiency of
residual checking for matrix-matrix multiplication will lay the foundations for
the study of a full dense linear algebra library. The major contributions of this
paper are the following:
• A synthetic comparison of several fault-tolerance methods for error detection
and correction in matrix-matrix multiplication, with novel approaches for RC;
• A publicly-available prototype implementation of all the methods, with calls
to optimized BLAS kernels;
• A comparative assessment for a wide range of failure rates and matrix sizes.

2



2 Methods

2.1 Replication

The first approach to detect computational errors is also the only systemic ap-
proach that can apply to any algorithm: it consists in replicating computations,
and checking that both executions produce the same result. In the context of
mutable data, this also implies to work on a copy of the data to compute, in
order to enable the replicated computation [12]. There are multiple ways to im-
plement replication: the computations can be executed sequentially, one after
the other, at any level of granularity, or in parallel. Ultimately, the replication
process provides two copies of the output of the computation and these copies
are compared bit-to-bit, to detect errors.

Any error detected can then be resolved with a voting process: more replicas
are computed, and if (at least) two output results converge on a same result,
this result is considered valid. The probability that two computation errors
produce the same result is considered negligible, since errors are supposed to be
independent and identically distributed random variables.

2.2 ABFT

ABFT is an approach introduced in [10], that leverages mathematical properties
of the algorithm to introduce redundancy in the data and thus allows to detect,
and sometimes locate and correct errors during a computation. Applied to the
matrix-matrix multiplication of the C ← AB as an example, where A is n-by-n
and B is n-by-n, the main idea of ABFT is to extend the matrix on which the
operation is applied with checksum vectors that are pre-computed before the
matrix-matrix multiplication. This gives

A extended as

(
A
Ac

)
with Ac = vTA, B extended as

(
B Br

)
with Br = Bw

where w and v are checksum generator vectors. Once A and B have been aug-

mented, we perform the matrix multiplication

(
C C(r)

C(c) C(α)

)
←

(
A

A(c)

)(
B B(r)

)
,

and we see that we must have the following relations

C(r) = Cw and C(c) = vTC and C(α) = vTCw. (1)

Therefore, a way to check that the entries of C have been correctly computed
is to check that the equalities in Equation (1) hold. With this scheme, we can,
for example, guarantee to detect any single error in C. (In other words, if no
more than one entry of C is corrupted, then this scheme will detect the error.)
Note that w and v does not have to be vectors, but they can also be block of
vectors,

The whole realm of error correction codes (e.g. Reed Solomon error correc-
tion code) is now at our doorstep since for each row Ci of C, we have computed

3



Ci and its checksum with respect to w, Ciw, and so not only can we detect
errors, but we can also locate and recover errors. Using Reed Solomon error
correction code, for example, we can detect, locate, and recover k errors with
2k + 1 checksums (provided that we use an appropriate encoding block of vec-
tors w). However, the Reed Solomon algorithm is notoriously unstable in finite
precision arithmetic [6] and does not enable one to recover from many errors or
to handle very long vectors.

For detection, in practice, one row checksum of the form Ciw is often enough

to detect errors in any row of C, Ci. We simply check whether Ciw = C
(r)
i . This

check can fail if the error vector introduced in C is orthogonal to w. However,
this is unlikely. Tolerance of the order of machine precision has to be added to
the check. Indeed, we only intend to detect errors that are larger than the errors
made by the round-off errors of the numerical computation. So we check, for
example, that ‖C(r) − Cw‖2 ≤ 10u‖A‖fro‖B‖fro‖w‖fro, where u is the machine
roundoff and the number “10” is taken arbitrarily [9]. A standard way to locate

errors is to use “coordinate checkpointing”. So if the row checksum C
(r)
i is not

Ciw and the column checksum C
(c)
j is not vTCj then we conclude that the entry

cij is false. Once an error is located, we can either recover the cij through the
redundancy introduced by the checksum and therefore solving a system of linear
equations with unknown cij , this leads to the method ABFT-solve, or we can,
in the case of matrix-matrix multiplication, simply recompute the entry cij from
the ith row of A and the jth row of B, this leads to the method ABFT-recomp.

One advantage of Reed Solomon is that it enables locating and correcting via
checksum only on the rows or only the columns, while coordinate checkpointing
would need both row and column checksums. For matrix-matrix multiplication,
it is convenient to maintain both checksums, while for other linear algebra op-
erations, this is not always natural. Now, how to choose v and w? In the case
ABFT-solve, Chen and Dongarra [5, 6] showed that taking random matrices
enable to recover the solution with high probability during the linear solve to
recover the corrupted entries. While less critical, it does seem a good idea to
also take random vectors v and w for ABFT-recomp.

As for the overhead, we see that to encode and compute with k checksums
with k � n is O(n3) flops, the cost to detect, locate and recover ` errors is
O(n2`) flops. Therefore the cost (in term of flops) of recovery is theoretically
negligible compared to the cost of computation.

2.3 Residual Checking (RC)

A closely related method is RC, which exploits the fact that checking the cor-
rectness of the result of a computation is usually easier than computing it. In
short, one more time using the C ← AB matrix-matrix multiplication as an
example, if one wants to check at low cost whether C is correctly computed,
one can compute, on the one hand, Cw and, on the other hand, A(Bw) and
check whether these two vectors are similar. And, not surprisingly, the two
methods ABFT and RC share similar characteristics: (1) Low cost, (2) if w is

4



in the nullspace of C−AB, the error matrix, then we will not detect the errors,
however this is unlikely, etc. Hence RC is very similar to ABFT. Historically
RC was introduced with “error detection” in mind only. So you would per-
form the computation, use RC to detect errors, and then redo the computation
if any error is detected [14, 15]. RC has long be thought to only be able to
detect errors, and not able to locate and correct errors. For example, Prata
and Silva [14] writes: “We left out of our comparison one aspect where ABFT
would do better than RC, namely fault localization and error recovery, (RC has
no such capability).” Actually, in very much the same way as ABFT, RC is
able to detect, locate and correct errors. The two methods (ABFT and RC) are
essentially similar and have the same capabilities.

2.4 Differences between ABFT and RC

There is a fundamental principle difference between RC and ABFT. Given some
input, an algorithm computes some output such that a relation is true. For ex-
ample, given A, (1) LU factorization: compute P , L, and U such that PA = LU ,
(2) QR factorization: compute Q, R such that A = QR, (3) SVD decomposition:
compute U , Σ, and V T such that A = UΣV T . RC finds a quick way to check
whether this final relation holds. For example, given a vector x, (1) check that
P (Ax) = L(Ux), (2) check that Ax = Q(Rx), (3) check that Ax = U(Σ(V Tx)).
If the relation does not hold, then RC has succeeded in detecting an error. If
the relation holds, then RC has succeeded in assessing (with high probability)
the correctness of the result.

On the contrary, ABFT starts with checksums on the initial data, and main-
tains the consistency of the checksums along the algorithm. So the checksums
are being modified as the data is being modified so that current data is consis-
tent with current checksum. As a side comment, the difference above explains
why that it is easier to derive RC for many more algorithms than for ABFT.
(In a few lines, we gave RC for three algorithms, and for ABFT, we barely
explained how this concretely worked.) However, in the case of matrix-matrix
multiplication and linear algebra in general, once RC and ABFT algorithms are
implemented, the differences are not so clear any longer, and we find that the
algorithms are often very close. We describe the design space as having three
dimensions. These three dimensions are essentially orthogonal in the sense that
it is possible to make choices in any dimension independently of the others.

Dimension 1: appending checksums or leaving checksums separate.
The checksums (for example Ac) can either (case 1ab) be appended to the main
matrix (e.g. as extra rows to A) or (case 1rc) left as separate independent
blocks of vectors. On the one hand, for RC, the checksums are naturally sep-
arate from the matrices. On the other hand, ABFT has been presented with
both possibilities. RC is always 1rc. ABFT can be 1ab (e.g., [2, 10]) or 1rc

(e.g., [18]).
One advantage of leaving the checksums separate from the matrices is to not

change the data structures of the original (non fault-tolerant) code. This is much

5



easier to accomplish from a software engineering point of view. One advantage
of appending the checksum is to call kernels only once (on the extended data
structure). The computation on the checksums is then processed at the same
time as the computation on the main matrix. This can be much faster.

Dimension 2: computing checksums on input data before computa-
tion or after. If we compute the initial checksums before the matrix-matrix
multiplication, we call this 2ab. If we compute the initial checksums after the
matrix-matrix multiplication, we call this 2rc. The main distinction between
2ab and 2rc is not really when we compute checksums, but more whether we
“can” recompute initial checksums after the main operation. Recomputing the
initial checksums after the computation means that we are storing the input
data, and we are not overwriting in the initial data with computation. In Nu-
merical Linear Algebra, this is a significant constraints since we often have one
operand that is in/out. If we perform 2rc, we must use backup (copy) of all
in-out operands.

It seems that, in the literature, ABFT always compute the initial checksums
before the computation. If one wants to append the checksums to the matrix,
then one will in general compute the checksums before the computation. There-
fore, often, 1ab ⇒ 2ab. (And its contrapositive: 2rc ⇒ 1rc: if we compute the
checksums after, then the checksums will be separate.) One advantage to com-
pute the checksums after is to compute as many initial checksums as needed by
the number of errors, which is useful to lower the overhead, and to avoid making
any assumption on the maximum number of errors that will be encountered.

Dimension 3: detect+recompute or detect+locate+lazy-recompute
or detect+locate+solve. Case 3rc: detect errors, and recompute the whole
computation if some errors are detected 3rc. Case 3lo: detect errors, locate
errors and recompute only the corrupted entries (also called lazy recomputation
in [18].) Case 3ab: detect errors, locate errors and recover the corrupted entries
from the redundant information in the checksum, we call this 3ab. A long-
held misconception is that computing initial checksum after does not enable to
recover corrupted entries from the checksum. In other words the misconception
is 2rc ⇒ 3rc. As already explained this is false.

For 3lo and 3ab, in this paper, the localization is done through “coordinate
checkpointing”. 3lo assumes that entries can be recomputed somewhat easily
from only the input data, and maybe some non-corrupted entries. It is not
obvious that there are many kernels for which this is possible. Matrix-matrix
multiplications is one such kernel. For 3ab, assuming that we can locate the
errors, (through coordinate checkpointing, for example,) Chen and Dongarra [5,
6] showed that taking random matrices enable to recover the solution with high
probability during the linear solve to recover the corrupted entries.

Reed-Solomon encoding enables 3ab with either a row checksum or a column
checksum, it does not require both row and column checksum. This is very useful
for some operations. (Not matrix-matrix mutiplication though.) However the

6



checksum block of vectors v and w are extremely ill-conditioned and leads to
numerically unstable codes. We note that 2ab +3ab is the only way (in this
design space) to overwrite in/out operands during the computation and recover
from errors. All other methods needs to copy and store in/out operands to extra
memory space to be able to recompute from the input in case an error occurs.

Which dimension distinguishes ABFT vs RC. Dimension 1: we can dis-
tinguish ABFT and RC by defining ABFT as appending checksums to matrices,
and RC as having checksum separate from matrices. Dimension 2: we can dis-
tinguish ABFT and RC by defining ABFT as computing the initial checksums
before computation, and RC as computing the initial checksums after compu-
tation. Dimension 3: we can distinguish ABFT and RC by defining RC as
detecting and maybe locating errors, and following a detection by recomputa-
tion, and defining ABFT as recovering the corrupted entries, after detection and
location, from the redundant information contained in the checksum.

3 Related work
Reference 1ab 2ab 3ab 1rc 2rc 3rc 3lo

[10] X X X
[14] X X X
[7] X X X
[4]* X X X
[2]* X X X
[1] X X X
[18] X X X

*errors are “failures” and therefore the
detection and localization of the error
is known

Table 1: Taxonomy of related work

Multitudinous papers have been
published on replication, ABFT
and RC. A surveys on ABFT is
provided in [3]. Due to lack of
space, we refer to the extended
version [11] for a more compre-
hensive overview. We have se-
lected below a small set of closely
related works, which we classify
in Table 1 according to the crite-
ria given in Section 2.

4 Experiments

4.1 Implementations

We implemented variants of all the techniques discussed above. The implemen-
tation is in C, relying on the BLAS kernels for all linear algebra operations
(namely GEMM and GEMV), and each hardened routine provides the same
API as the GEMM routine defined by BLAS, but implements a different error
detection and correction strategy. Here is the list of the six routines that we
implemented, and that we compare in Section 4.3:
• NoFT is a reference point, and is a direct call to the GEMM routine provided
by the BLAS library, without any error checking nor correction strategy.
• Replication uses the most simple (and systematic approach): replication,
as described in Section 2.1: the GEMM operation is computed twice, then re-
sulting elements are compared one by one, and if an error is detected, the entire

7



operation is computed a third time. Elements are then selected by a simple ma-
jority vote, and if no majority can be obtained for some element, the operation
is applied again, until a pair of matching results can be found.
• ABFT-solve (=1ab +2ab +3ab) is the traditional ABFT method: the input
matrices are copied into larger matrices, that are extensions of the inputs with
a fixed number of column and row checksums. These checksums are computed
from the initial data, and the GEMM operation is applied on the extended ma-
trix. After it completes, we check the checksums to detect errors. If errors are
detected, a linear system of equations is solved [2, 4, 17, 16, 13] to compute the
corrected values, and the resulting matrix is copied in the output parameter.
• ABFT-recomp (=1ab +2ab +3lo) follows the same strategy as ABFT-
solve to detect errors, but the matrix is extended with a single column and
row as checksums. By crossing the columns in which the row-checksum is in-
correct and the rows in which the column-checksum is incorrect, we extract a
number of suspected wrong results, and we recompute only these elements from
the input data. The result is checked (iterating another step of re-computation
if needed), and copied back into the output parameter.
• RC-solve (=1rc +2rc +3ab) uses the RC to compute the checksums (see
Section 2.3): the GEMM operation is computed, and once it is computed, a
single column checksum is generated randomly, and the routine compares how
applying the output of GEMM on it differs from applying the two input ma-
trices. If the result differs in any element, there is at least an error on the
corresponding row(s). Additional checksums are then generated, until a system
of linearly independent equations can be formed. That system is solved to cor-
rect the errors.
• RC-recomp (=1rc +2rc +3lo) uses the same approach as RC-solve, until
the correction phase is reached. When this is the case (there is at least one row
with errors), a row-checksum is computed (as the column checksum was), and
by crossing the row-checksum errors and the column-checksum errors, we can
approximately locate suspected error locations. These elements of the output
matrix are recomputed from the initial data to patch the result matrix which is
returned by the routine.

4.2 Setup

For introducing errors in the operations, we use a parameter r which is the error
rate of one floating-point operation. We compute the probability for an element
to be erroneous, knowing it is the result of m operations: P = 1− (1− r)m and
we modify each element that has been drawn to be corrupted by multiplying the
element by a factor randomly chosen between 0.5 and 1.5, after doing the com-
putation. We first apply this modification on all the elements of the matrix after
the GEMM operation, with m = 2n−1, because there are n multiplications and
n− 1 additions per element when multiplying square matrices of size n. Then,
for the recomputed elements of RC-recomp and ABFT-recomp implementa-
tions, we set m = 2n− 1 for each element that is recomputed from scratch and
we check again the result. For RC-solve and ABFT-solve, m = c2 where c

8



500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000
Matrix size N

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

T
im

e
(s

)

500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000
Matrix size N

0.0

0.1

0.2

0.3

0.4

T
im

e
(s

)

NoFT

ABFT-recomp

ABFT-solve

RC-recomp

RC-solve

Replication

DGEMM

Check

Correct

Figure 1: Sequential (left) and multi-threaded (right) algorithms, error rate of 10−9.

is the number of corrupted columns in the matrix. Finally for Replication,
m = 2n−1 for each element of every new matrix computed. In each experiment,
the maximum duration of the hardened operation is bounded by 4 iterations of
the applied check / correct procedure, and if the matrix is still corrupted at this
point, the operation is considered failed. ABFT-solve needs one additional
parameter which is the number of checksums to add to the matrix: we set it to
2 × 2N3r as 2N3r is the expected number of failures during the computation
and we want a margin to tolerate more errors in bad scenarios. If ABFT-solve
cannot solve the system of equations, the operation is considered as failed.

We run the experiments with 16 cores out of a 20-core Intel Xeon CPU
E5-2650 v3 at 2.30GHz, with 64GB of memory hosted at the University of Ten-
nessee. The code is compiled with GCC 9.2.0, and the BLAS kernels where
provided by Intel MKL version 2019.3.199. We evaluate both the sequential
and multi-threaded versions of the algorithms. We run 100 iterations of each
combination of implementations and parameters (the matrix size N and the
error rate r) and we average the execution times of the different parts of the al-
gorithm. DGEMM is the time spent doing the main operation (and subsequent
DGEMMs for Replication); Check is the time spent computing the checksums
and finding the location of the errors; Correct is the time spent recomputing or
solving the systems depending on the chosen implementation. We report the
execution times when each of the 100 iterations succeeds; otherwise, we report
the number of failed iterations. As a reference, we show the time to execute a
GEMM on a N×N matrix without fault tolerance nor failure injection under the
name NoFT. The source code of the implementations used for the experiments
is available at https://github.com/vlefevre/abft-rescheck.

4.3 Results

Figure 1 describes the detailed execution of our 6 implementations for an error
rate r = 10−9 and a varying matrix size N . The first thing to notice is that
replication is always the less efficient technique. Indeed, even without failures,
two full DGEMM operations need to be executed to detect failures. Moreover,
every time there is at least one error during the computation, we need to com-
pute the resulting matrix a third times to correct it. It is enough to correct
in most cases but the cost of a DGEMM operation, especially in sequential, is
much bigger than the cost of a detection and the ensuing correction at this error

9



Implementation ABFT-solve RC-solve

Error rate r 10−10 10−9 8× 10−9 10−8 8× 10−9 10−8

Matrix size N 3000 500 750 1000 1250 3000 3000 3000 3000

Sequential 4 2 23 0 7 1 3 11 78

Multi-threaded 3 2 24 4 3 0 4 15 81

Table 2: Number of failed iterations (over 100) for parameters used in Fig. 1–2.

1e-10 2e-10 4e-10 8e-10 1e-9 2e-9 4e-9 8e-9 1e-8
Error rate r

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

T
im

e
(s

)

1e-10 2e-10 4e-10 8e-10 1e-9 2e-9 4e-9 8e-9 1e-8
Error rate r

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

T
im

e
(s

)

NoFT

ABFT-recomp

ABFT-solve

RC-recomp

RC-solve

Replication

DGEMM

Check

Correct

Figure 2: Sequential (left) and multi-threaded (right) algorithms, matrix size 3000.

rate.
The overheads of detecting and correcting errors for all methods but Repli-

cation remain small, even when the matrix size (thus the number of errors)
increases: there is only a small proportion of the output matrix that is corrupted,
and thus the amount of recomputation or the size of the linear problem to solve
to correct are small. Recomputation-based approaches, however, outperform
significantly system-solving approaches.

The multi-threaded case shows the same characteristics overall, except the
check time of Replication is significantly increased, relative to the duration of
the GEMMs. As checking for Replication is a memory-bound problem, when
all the cores access the memory simultaneously, the memory bus becomes the
bottleneck and limit parallel efficiency.

When N increases, both RC-solve and ABFT-solve are likely not to cor-
rect everything within 4 re-executions as the correction is done by solving linear
systems of size c, hence with O(c3) flops, where c is the number of corrupted
columns. For a given error rate, increasing N will increase both the number
of columns and the probability that it is corrupted at the beginning. Thus the
number of operations involved in the solve phase (c2 compared to 2n − 1) can
quickly grow and we need more iterations to finish. ABFT-solve also does
not always correct for small error rates or small matrix sizes (see Table 2). As
the margin on the number of checksums to add is smaller, it becomes easy to
have more errors than what we estimated even if we already added a factor
2 to the expected number of failed operations. This risk is managed by the
RC-solve implementation as the checksums are computed after failures hit the
initial DGEMM operation, and thus the exact minimal number of checksums is
used.

Figure 2 shows the same measurements, but with a fixed problem size (N =
3000) and a varying error rate. The Solve-based approaches do not produce

10



500 1000 1500 2000 2500 3000
Matrix size N

0

1

2

3

4

P
er

fo
rm

an
ce

×1010

NoFT

ABFT-recomp

ABFT-solve

RC-recomp

RC-solve

Replication

500 1000 1500 2000 2500 3000
Matrix size N

0

1

2

3

4

P
er

fo
rm

an
ce

×1010

NoFT

ABFT-recomp

ABFT-solve

RC-recomp

RC-solve

Replication

Figure 3: Overall performance of the 6 algorithms for r = 10−9 (left) and
r = 10−8 (right).

results at 8 × 10−9 and 10−8 error rates in the sequential case, and ABFT-
solve only produce an output in a very long time in the multithreaded case
with an error rate of 8× 10−9. As the number of columns including errors gets
closer to N , the size of the system to solve becomes closer to the size of the
original matrix. Since errors can also impact these computations, with a higher
probability, the solve-based approaches fail, leading to repeated iterations of the
correction process.

For low error rates, RC-recomp and ABFT-recomp are the two best per-
forming algorithms and behave very similarly. The main difference between the
two algorithms is that RC-recomp is easier to (1) set up since the check is
done after the main computation and does not depend on the algorithm (for
detection) and (2) to use as a blackbox for the user with no conversion of data
needed. This last point is important as a user-friendly library would take as
input N × N matrices and ABFT needs to add some extra steps to compute
a bigger matrix with the checksums in it. This can quickly increase the execu-
tion time (and the memory footprint) of the algorithm if only a few DGEMM
operations are done in a row because of the memory allocations and copies.

However, as the error rate increases, the recomputation-based approaches
start to show slower corrections. This is particularly visible in the multi-
threaded case: Replication eventually outperforms RC-recomp and ABFT-
recomp. To explained this: first, Replication’s efficiency is independent
from the error rate, because errors hit independent elements in the 3 computed
matrices; second, as the number of errors in the matrix gets closer to N2, the
recomputation algorithm is less efficient than re-doing a fully optimized GEMM:
it implements a parallel loop over the failed elements of sequential dot prod-
ucts. In the multi-threaded case, this is less efficient than recomputing the entire
GEMM.

We sum up these results in Figure 3. We represent here the performance
of the operations, as the ratio between 2N3 (the number of floating point op-
erations in a GEMM) and the execution time of the sequential algorithms. It
is clearly visible that the error rate has no influence on Replication while
ABFT-recomp and RC-recomp are the two best performing algorithms and
their performance is equivalent. We also see that their performance stays close

11



to that of NoFT as long as both r and N do not become too big. See the
extended version [11] for a similar figure where the matrix size is fixed and the
error rate is varied.

5 Conclusion

In this paper, we have reviewed and compared ABFT and Residual Checking
(RC) for detecting and correcting floating-point errors in matrix multiplication.
On the theoretical side, we have detailed both methods, their variants, their
common characteristics and their differences. On the practical side, we have
implemented two variants for error correction in each method, one based on
solving a small linear system, and one based on recomputing only corrupted
elements, using coordinate checksumming to locate them. An extensive experi-
mental comparison reveals similar execution times for the core of each method,
but ABFT requires to embed the checksum in the user data in order to benefit
from the high performance kernel implementation, while RC does not. Also,
the flexibility of RC becomes very important when error rates are high, because
RC can adapt a posteriori to the number of errors encountered within each par-
ticular execution. On the contrary, ABFT protection is constructed in a rigid
way, with a fixed number of checksums which will rarely match the exact num-
ber of errors striking in a given run. This represents an acceptable overhead
when the number of errors is smaller than expected, but it leads to the failing
of the method when the number of errors is higher than the maximum number
of errors that can be tolerated. To summarize, we point out that RC can be
extended to correct silent errors in addition to detecting them, in a flexible and
adaptive way, and without the burden of the extra memory allocation required
by ABFT. Future work will be devoted to extending the approaches to other
linear algebra kernels, and to protect from memory corruptions in addition to
floating-point errors.

References

[1] Argyrides, C., Lisboa, C.A.L., Pradhan, D.K., Carro, L.: A fast error
correction technique for matrix multiplication algorithms. In: 15th Int.
On-Line Testing Symposium. pp. 133–137. IEEE (2009)

[2] Bosilca, G., Delmas, R., Dongarra, J., Langou, J.: Algorithm-based fault
tolerance applied to high performance computing. J. Par. Dist. Comput.
69, 410–416 (2009)

[3] Bouteiller, A., Herault, T., Bosilca, G., Du, P., Dongarra, J.J.: Algorithm-
based fault tolerance for dense matrix factorizations, multiple failures and
accuracy. ACM Trans. Parallel Comput. 1(2), 10:1–10:28 (2015)

12



[4] Chen, Z., Dongarra, J.: Algorithm-based checkpoint-free fault tolerance
for parallel matrix multiplications on volatile resources. In: Proc. IPDPS.
IEEE (2006)

[5] Chen, Z., Dongarra, J.J.: Condition numbers of gaussian random matrices.
SIAM J. Matrix Analysis Appli. 27(3), 603–620 (2005)

[6] Chen, Z., Dongarra, J.J.: Numerically stable real number codes based on
random matrices. In: ICCS 2005. LNCS vol 3514. Springer (2005)

[7] Gunnels, J., Katz, D., Quintana-Ort́ı, E., Van de Geijn, R.: Fault-tolerant
high-performance matrix multiplication: Theory and practice. In: Proc.
Dependable Systems and Networks (DSN). pp. 47–56 (2001)

[8] Herault, T., Robert, Y. (eds.): Fault-Tolerance Techniques for High-
Performance Computing. Computer Communications and Networks,
Springer Verlag (2015)

[9] Higham, N.J., Mary, T.: A new approach to probabilistic rounding error
analysis. SIAM J. Scientific Computing 41(5), A2815–A2835 (2019)

[10] Huang, K., Abraham, J.: Algorithm-based fault tolerance for matrix oper-
ations. IEEE Trans. Computers 33, 518–528 (1984)

[11] Le Fèvre, V., Herault, T., Langou, J., Robert, Y.: A comparison of several
fault-tolerance methods for the detection and correction of floating-point
errors in matrix-matrix multiplication. Research report RR-9351, INRIA
(June 2020)

[12] Lyons, R.E., Vanderkulk, W.: The use of triple-modular redundancy to
improve computer reliability. IBM J. Res. Dev. 6(2), 200–209 (1962)

[13] Plank, J.S.: A tutorial on Reed-Solomon coding for fault-tolerance in
RAID-like systems. Software – Practice & Experience 27(9), 995–1012
(1997)

[14] Prata, P., Silva, J.G.: Algorithm based fault tolerance versus result-
checking for matrix computations. In: Digest of Papers. 29th Int. Symp.
Fault-Tolerant Computing. pp. 4–11 (1999)

[15] Prata, P., Silva, J.G.: Fault-detection by result-checking for the eigenprob-
lem. In: Dependable Computing — EDCC-3. Springer (1999)

[16] Reed, I.S., Solomon, G.: Polynomial codes over certain finite fields. J.
oSociety for Industrial and Applied Mathematics 8(2), 300–304 (1960)

[17] Roy-Chowdhury, A., Banerjee, P.: Algorithm-based fault location and re-
covery for matrix computations on multiprocessor systems. IEEE Trans.
Comput. 45(11) (1996)

13



[18] Smith, T.M., van de Geijn, R.A., Smelyanskiy, M., Quintana-Ort́ı, E.S.:
Towards ABFT for BLIS GEMM. Tech. Rep. 76, FLAME Working Note
(June 2015)

14


